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~— ABSTRACT

9 The avthoe bes

Jle—have” previously proved an implicit-function theorem for regular
solutions of generalized equations. Here u&rshowqphat when the underlying set
for the generalized equation is polyhedral, as it is in many applications,
then the implicit function has a Bouligand derivative defined by a formula
generalizing that of the usual implicit-function theorem. This extends recent

results on directional differentiability obtained by Kyparisis and others.
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! SIGNIFICANCE AND EXPLANATION

:t;)Generalized equations are mathematical models for nonlinear equilibrium
problems in areas such as economics, transportation, etc. In such models, it
is desirable to know how the solution of the model will change when the
problem data change. When such a change is too hard to compute, a convenient

approximation method may yield an angswer that is good enough, particularly for

> See A

small changes. This paper develops such an approximation.
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IMPLICIT B~DIPFERENTIABILITY IN GENERALIZED EQUATIONS
Stephen M. Robinson

t. Introduction. This paper deals with solutions of generalized equations of the form

0 ¢ tip,x) + dpg(x) , (1. ) (p)

where f : 1 xQ +» W, I and 0 are open subsets of a normed linear space P and of

R’ respectively, and K is a polyhedral convex set in R'. The variable p is a
perturbation parameter; for fixed p, (1.1)(p) expresses the geometric requirement that
f(p,x) be an inward normal to K ac x. Generalized equations like (1.1)(p) can be used
to model a wide variety of equilibrium and optimization problems; for discussion and
examples, see the survey in (3].

In [2, Th. 2.1] we showed that if for a fixed Pg € 1 a solution x5 € @ of (1.1)(p)
possesses a certain property that we shall call regularity, then for p near pg (1.%)(p)
defines a (locally) single-valued implicit function x(p) having the property that the
pair (p,x(p)) solves (1.1)}(p). PFurther, in [2, Cor. 2.2, Th. 2.3] we showed that under
mild additional assumptions x({+) is Lipschitzian and is closely approximated by the
solution z(p) of the linear generalized equation

0 € f(p,xg) + £, (pg,xg)(E=%g) + dyy(z) , (1.2)
where f _(pg,xg) denotes the partial Préchet derivative with respect to x. All this is
reminiscent of the implicit-function theorem, yet there is one aspect of that theorem that
does not appear in [2]: the fact that if the original function is Fréchet differentiable
then so is the implicit function, and that its derivative may be calculated by implicit
differentiation. The reason this result does not appear in [2] is that it is not true for
generalized equations: one may show easily by examples that even if the solution of
(1.1)(p) is regular it may not be Fréchet daifferentiable at p;.

More recently, in a paper primarily concerned with variational problems over perturie.d

sets, Xyparisis used results of (2] to prove that if f is c! at (pgsxg) then the

Sponsored by the National Science Foundation under Grant No. DCR-8502202, and by the United
States Army under Contract No. DAAG29-80-C-0041.




solution xp(p) of

P -Po
0 ¢ f(po,xo) + f'(po,xo) + 30‘(::)

- (1.3)
%(p) Xy

approximates x(p) to better than linear order in lp-pol [1, Lemma 4.1). He actually
proved this for the case in which N C R and X is a closoﬁ convex (not necessarily
polyhedral) set. He then observed that this result implies directional differentiability
of x at pg if xp is directionally differentiable there [1, Cor. 4.2), and he related
this fact to several other papers on variational inequalities and equilibrium problems; see
[1] for references to these papers.

Our aim in this paper is twofold. First, we show that when K is polyhedral x(e¢)

has a stronger property than directional differentiability: in fact, it has a Bouligand

derivative (B-derivative) at pg. The B-derivative was introduced in (5]; it has

properties weaker than those of the Préchet derivative but stronger than those of
directional derivatives. In particular, B-differentiability implies directional
differentiability in all directions, but it also describes the relationships of the
directional derivatives to each other. Our second aim is to show that thig stronger result
holds (again, for polyhedral K) under weaker hypotheses than those used in [1] for
general K.

In the next section we review B-differentiability and show how under some
circumstances a B-derivative can be represented by a sum of partial derivatives. Then in

Section 3 we prove the implicit-function theorem that is our main result.
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2. Review of B-differentiability. Here we review some facts about B-differentiability

that we shall need in Section 3. For proofs, see the appendix in [5].

Given a Lipschitzian function g from an open subset Q@ of R to M, we say
that g has a B-derivative at xj € Q if there is a (single-valued) function Dg(xg)
from K' to W guch that (1) the graph of Dg(xo) is a cone, and (2) one has for x
near xg,

gix) = glxg) + Dgl{xg)(x=xq) + o(x=%g) . (2.1)
Of course, if the graph of Dg(xgy) 1is a subspace then we have the usual notion of Fréchet
(F-) differentiability, so any F~differentiable function is B-differentiable, although the
converse is of course not true.

In (5] we showed that if (2.1) held at all then it held for just one function Dg(xo):
that is, the B-~derivative is unique when it exists. We also showed that Dg(x,) inherits
the Lipschitz modulus of g, that it obeys the usual chain rule, and that B~
differentiation is a linear operation in the space of Lipschitzian functiona.

For our work in this paper we need to relate B-differentiabjility to partial
differentiation. Of course one can define a partial B-derivative of a function of several
variables: for example, in the case of g(x,y) we would define nyg(x.y) to be the B~
derivative of the function of y given by g(x,*). However, it should be clear that the
usual formula representing the F-derivative of a function of several variables in terms of
the individual partial derivatives will not work for B-derivatives. For example, consider
the Euclidean norm 1+ (which is its own B-derivative). BExcept for one-dimensional
cases, this cannot be represented by sums of the partial B-derivatives of the components.

However, something can be salvaged if some of the components have continuous F-

derivatives instead of just B-derivatives, as the following proposition shows.

PROPOSITION 2.1: let g be a Lipschitzian function from § x T to RS, vhere S

and T are open sets in R" and W' respectively. Let (x),y5) ¢ S x T, and suppose

that the partial Fréchet derivative gy of g with respect to x is continuous at

(vaYO)' M
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Dg(xg,yg) (Vow) = gy(xg,¥g)V + Dygixg,ygl(w) . (2.2)

Proof: By uniqueness of the B-derivative we need only show that the function on the
right side of (2.2) has a cone for its graph, and that it approximates ¢ to better than
first order. The first statement is obvious. For the second, choose € > 0 and let V
(convex) and W be neighborhoods of x5 and y, respectively, so mmall that if x ¢ V
and y ¢ W then

tgixg,y) = 9lxg,vg) = Dygixg,yg)ly-vo)? S €ly-yol .
and for each 1\ ¢ (0,1],
qu[(‘l-X)xo + Ax, y] - gx(xo,y)l $e .
Then
fg(x,y) = glx)s¥y) = g (xq0¥q) (x~x4) = oyg(xo,yo)(y-yo)l
s 'q(xoly) - g(XOIYO) - DYQ(XOIYO)(Y'YO)'
+ Ig(x,y) - q(xo,y) - 9,:("0"0”""‘0”
1
S elyy b + 1 jo{gxtn-nxo +Axy) = g (xp.y0) Hoex )

< e(ly-yol + Ix-xol) .

Since € was arbitrary, (2.2) follows immediately, completing the proof.

In applying Proposition 2.1, a change of coordinates may sometimes be useful. PFor
example, consider the function g(x,y) = xty + Ix-yl. It is not hard to see that g does
not have a partial derivative at the origin with respect to either x or y. However, by
introducing the change of variable given by w = xty and v = x-y one obtains the new
function h(v,w) = q[-;- (wtv), % (w=v)] = w + dvl, to which Proposition 2.1 can be applied.

We shall apply Proposition 2.1 in the next section to separate the differentiability
requirement on f with respect to x from those with respect to p. We shall see that
although we require ¢! behavior in x, it suffices for f to have a B~derivative with

respect to the parameter p. This will enlarge the class of functions to which our main

theorem can be applied.




3. An _implicit-function theorem. In this section we review the connection between
regularity and the linearization of (1.1)(p°)- We then state and prove the main theorem.

Recall that if x,; solves (1.1)(pg), it is called a regular solution if fx(po,xo)

exists and if the linear generalized equation

Yy € f(po,xo) + f“(po,xo)(x-xo) + dy(x) (3.1)
defines a (single-valued) Lipschitzian function x = x(y) from a neighborhood of the
origin to a neighborhood of x; (see (2] and [3]; in [2] this property was called “"strong
regularity®™). It turns out that we can take advantage of the structure of X near X, to
simplify (3.1) and to make the property of regularity geometrically clearer.

First, since x; solves (1.1)(p,) we know that 0 ¢ £(pgexg) + 3dp(xy), and thus the
set K := {xek | <f(po,xo), x—xo> = 0} is a face of K. Since K is polyhedral, for
any h near f(pg,xy) the set of points x satisfying 0 ¢ h + 3yx(x) and that
satisfying 0 ¢ h + atxo(x) are the same (4, Lemma 3.5]. But, again by polyhedrality,
near x,; the face K; coincides with Xg + T, where T is the tangent cone to K, at
Xg- Therefore, for h near £(pg.%x;) and v near the origin, we have -h ¢ awx(xo + v)

if and only if <h € 3Ygp(v). With these observations, we can use the following proposition

to reduce the question of regularity to one of unigque solvability for a simpler generalized

e e e
oo

equation.

T
o wr
—

PROPOSITION 3.1: Suppose x, solves (1.1)(py) and £, (pg.x,)} exists. Then x; is

a_regulatr solution if and only if the generalized equation
Yy € fx(Potxo)V + Q*T(V) (3.2)

£S
-

i
)

-

has_a unique solution v = v(y) for each y ¢ R'. Further, if this is so _then v is

Lipschitzian, and for each y near 0 the solutions x(y) and v(y) of (3.1) and (3.2)

respectively satisfy x(y) = x4 + v(y).

Proof: We first show that for y near 0 and x near Xg, and with v = X=~Xgp.
the pair (y,x) satisfies (3.1) if and only if the pair (y,v) satisfies (3.2). If
(y,v) 18 near (0,0) and satisfies (3.2), then v ¢ T. However, by construction

£(pg,xq) is orthogonal to each element of T, and thus (3.2) is equivalent to

-5




Yy € t(pg,xg) + £,(PgixXg)Vv + IPp(v) . (3.3)
for x near x; we know awxotx) = Wp{x-xg9), 80 we can rewrite (3.3) with v = x-x; as
Y € £(pg,xg) + £,(pg.xg) (x-%xg) + N‘o(x) . (3.4)
Further, since y is also near the origin the quantity -y + £(pg,xg) + £,(pg,%Xg) (x-%g)
is close to f(pg,xg)- But then by [4, Lemma 3.5) the relation (3.4) holds if and only if
the same relation holds with K in place of Kj: i.e., if and only if we have (3.1).
Conversely, if (y,x) is near (0,x;) and satisfies (3.1), then we know x ¢ K;
as y isnear 0 and x is near x; we can reverse the previous argument to obtain
(3.4) and then (3.3). This tells us that v = x-x; must belong to T, and we can then
follow the same argument back to obtain (3.2).
Now suppose that (3.2) has a unique solution v(y) for each y ¢ . The function
v(y) is polyhedral, hence everyvhere locally upper Lipschitzian with some constant modulus
[6, Prop. 1]. But by hypothesis v is single-valued, and it is easy to show that it is
then actually Lipschitzian with the same modulus. It follows that, since (0,0) satisfies
(3.2), if y is any point near 0 then v(y) is also small, and hence x = xg+v(y) is
near xg. By our previous argument the pair (x,y) satisfies (3.1). If x' is near x;
and (y,x') satisfies (3.1), then again we apply the previous argument to conclude that
(y,x'-xg) satisfies (3.2). By uniqueness of v, we then have x'-x3 = x-x3, 80 that
x 1is locally unique as a solution of (3.1). But x inherits the Lipschitz modulus of v;
hence x3 is a regular solution of (1.1)(pg).
Finally, suppose Xxg is a regular solution of (1.1)(pg). let y ¢ #, and let
@ > 0 be such that ay is close enough to 0 for the definition of regularity to yield a
locally unique x near x5 with (ay,x) satisfying (3.1). Since regularity requires
that x be Lipschitzian, we can suppose & is so small that the pair (ay,x) is close
enough to (0,xq) for our previous argument to apply. That argument shows that if we
define v by av = x-xg, then (ay,av) satisfies (3.2). However, since T is a cone
the pair (y,v) then also satisfies (3.2). If v' is such that (y,v') satisfies (3.2),
then for small positive 8 the pairs (B8y,8v) and (By,Bv') both satisfy (3.2) and are

close to (0,0). Lletting x = xg+8v and x' - xg+8v', we apply the previous argument to

-6=




show that (By,x) and (8y,x') each satisfy (3.1). But by the local uniqueness
reguirement of the regularity assumption, we have x = x'; thus v = v' and the solution
of {3.2) is globally unique. This proves Proposition 3.1.

We are now ready to prove the main result, which says that the solution of (3.2) for a
special choice of y yields the B-derivative of x(¢) at pg. For completeness we
include in the statement of the theorem some results from (2], establishing existence and
Lipschitz continuity of the implicit function defined by (1.1)(p), but the result on B-

differentiability is our main object here.

THEOREM 3.2: lLet f be a Lipschitzian function from @ x Q@ + R'. Suppose that:

a. The partial F-derivative f, exists on Q@ and is continuous at (pg.%qg),

and

b. x5 is_a regular solution of (1.1)(pg).

Then there are neighborhoods N, 9f xg _g_t_\g_ Np of pp, and a Lipschitzian

function x : Np + N,, such that for each p ¢ Np, »{p) is_the unique solution in N, of

(1.1)(p). Further, the B-derivative of x at pg is given by Dx(pg)(w) = vy,

where vy = vy(w) is the unique solution of the linear generalized equation

0 ¢ fx(po,xo)vL + Dpf(po,xo)(w) + aq.T(er p (3.5)

Proof: The conclusion about x(-), except for the B-derivative, follows from [2, Th.
2.1, Cor. 2.2]. Since x is Lipschitzian on N,, (5, Th. A.2] applies to show that it
will be B-differentiable at pg with B-derivative vy (w) given by (3.5) provided we can
show that vL(-) is a single-valued function whose graph is a cone and that for w near
0, x(pgtw) = xg+vp(wjto(w). The single-valuedness follows Jrom our comments on (3.2),
since (3.5) is nothing but (3,2) with y = -Dpf(po,xo)(w). Also, since Dpf(po,xo)(o) is
positively homogeneous and since T is a cone, the graph of vL(-) is a cone. Therefore
we have only to establish the approximation property.

Recall that for p near pp we have

0 ¢ £f{p,x(p)) + RNgix(p)) . {3.6)

33 % LA, 2
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As x(p) remains near xg, by reasoning as in the proof of Proposition 3.1 we can show
that (3.6) is equivalent to
0 € f(pgtw, xg+v(w)) + Jpp(v(w)) , (3.7)
where w = p-pg and v(w) = x(pgtw) - xg. This in turn can be rewritten as
-f(pow,xow(v)) + fx(po,xo)v(v) € fx(po,xo)v(w) + WT(v(w)) . (3.8)
We can also rewrite (3.5), recalling that f(po,xo) is orthogonal to each element of T,

to obtain
-f(po.xo) D f(po.x Yw) € £ ‘Po"‘o Lt awT(vL) . (3.9)

Using the Lipschitz property of (3.2) and writing A for the modulus, we find from (3.8)

and (3.9) that

Iv(w)-vL(v)l < le(pow,xow(w)) - f(po,xo)

- fx(po.xo)v(w) - Dpf(po ,xo)(v)l

- o(["")))

&

where we have used Proposition 2.1. However, since x(¢) is Lipachitzian in p, v(+) is

lipschitzian in w. It follows that Iv(w) - vL(w)l = o(w), which completes the proof of

Theorem 3. 2.
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